

European Technical Assessment

ETA 21/0288 of 12/04/2021

(English language translation, the original version in Czech language)

Technical Assessment Body issuing the ETA: Technical and Test Institute for Construction Prague

Trade name of the construction product RESINA POLIESTER LUSAN

Product family to which the construction

product belongs

Product area code: 33 Bonded injection type anchor for use in

uncracked concrete

Manufacturer LUSAN fijaciones y anclajes

Molinos 20

29491 Algatocín Málaga

Spain

Manufacturing plant(s) Plant 1

This European Technical Assessment

contains

15 pages including 12 Annexes which form

an integral part of this assessment.

This European Technical Assessment is issued in accordance with regulation

(EU) No 305/2011, on the basis of

EAD 330499-01-0601 Bonded fasteners for use in concrete

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The RESINA POLIESTER LUSAN POLI, POLIE, POLIT for uncracked concrete is a bonded anchor consisting of a cartridge with injection mortar and a steel element. The steel elements consists of a commercial threaded rods, a hexagon nut and a washer. The steel elements are made of galvanized steel or stainless steel.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance		
Characteristic resistance to tension load	Annex C1, C2		
(static and quasi-static loading)	Affilex C1, C2		
Characteristic resistance to shear load	Annex C1, C3		
(static and quasi-static loading)			
Displacements under short term and long term loading	Annex C4		
Durability	Annex B1		
Characteristic resistance and displacements	NPA		
for seismic performance categories C1 and C2	NPA		

3.2 Hygiene, health and environment (BWR 3)

No performance determined.

3.3 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission¹ the system of assessment verification of constancy of performance (See Annex V to Regulation (EU)

No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors	For fixing and/or supporting to		
for use in	concrete, structural elements (which		1
concrete	contributes to the stability of the	_	'
	construction works) or heavy units		

Official Journal of the European Communities L 254 of 08.10.1996

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

5.1 Tasks of the manufacturer

The manufacturer may only use raw materials stated in the technical documentation of this European Technical Assessment.

The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technický a zkušební ústav stavební Praha, s.p.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

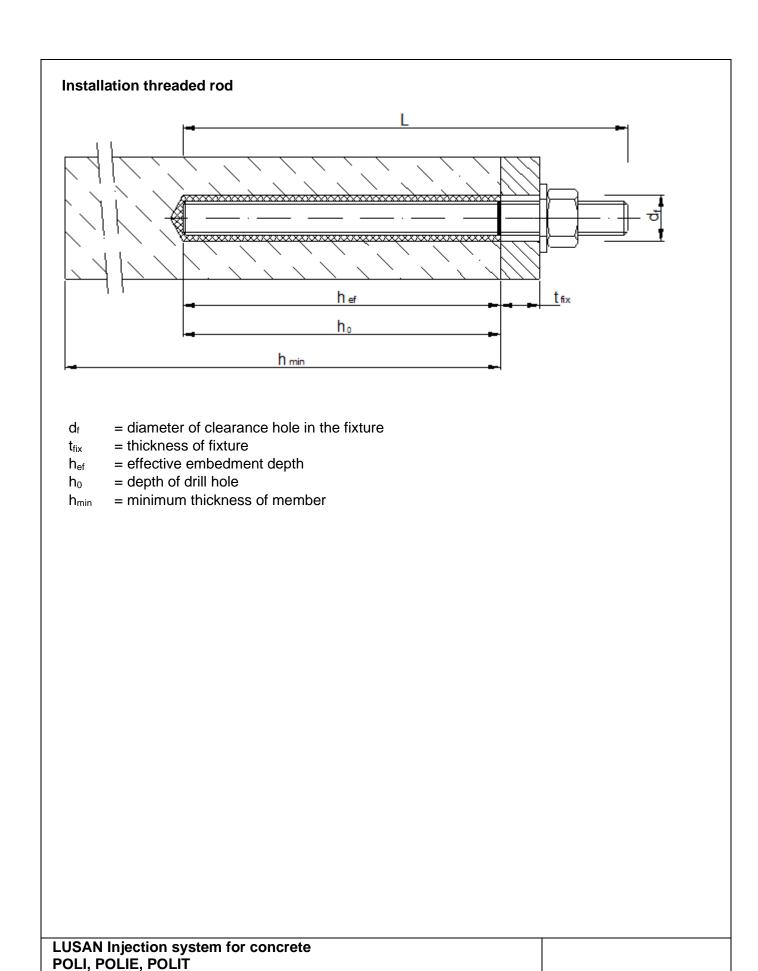
5.2 Tasks of the notified bodies

The notified body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

The notified certification body involved by the manufacturer shall issue an certificate of constancy of performance of the product stating the conformity with the provisions of this European Technical assessment.

In cases where the provisions of the European Technical Assessment and its control plan are no longer fulfilled the notified body shall withdraw the certificate of constancy of performance and inform Technický a zkušební ústav stavební Praha, s.p without delay.

Issued in Prague on 12.04.2021

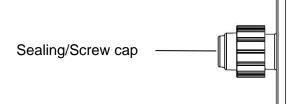

Ву

Ing. Mária Schaan

Head of the Technical Assessment Body

Page 3/15 of ETA 21/0288 issued on 12/04/2021 English translation by TZÚS Prague – branch TIS

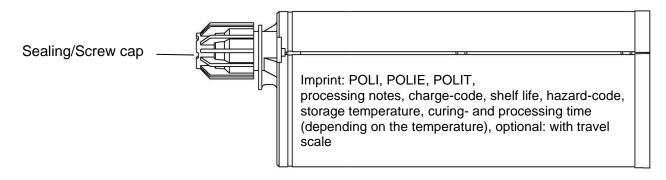
The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

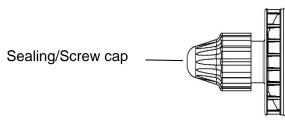


Annex A 1

Product description Installed conditions

Cartridge: POLI, POLIE, POLIT


150 ml, 280 ml, 300 ml up to 330 ml and 380 ml up to 420 ml cartridge (Type: coaxial)


Imprint: POLI, POLIE, POLIT, processing notes, charge-code, shelf life, hazard-code, storage temperature, curing- and processing time (depending on the temperature), optional: with travel

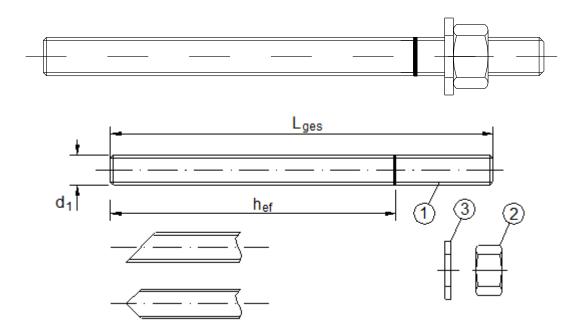
scale

235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")

165 ml and 300 ml cartridge (Type: "foil tube")

Imprint: POLI, POLIE, POLIT,

processing notes, charge-code, shelf life, hazard-code, storage temperature, curing- and processing time (depending on the temperature), optional: with travel scale


Static mixer

SM 14W

Product description lnjection system Product system Annex A 2

Threaded rod M8, M10, M12, M16, M20, M24 with washer and hexagon nut

Commercial standard threaded rod with:

- Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

LUSAN Injection system for concrete POLI, POLIE, POLIT	
Product description Threaded rod	Annex A 3

	Designation	Material			
Ste	eel, zinc plated (Steel acc. to EN 10		3:200°	1)	
in	c plated ≥ 5 µm acc. to EN ISO 4042	2:1999 or hot-dip galvani	sed ≥	. 40 μm acc. to EN ISO 1	461:2009 and
ΞN	ISO 10684:2004+AC:2009 or shera	rdized ≥ 40 μm acc. to E			
					I/mm²; A ₅ > 8% fracture elongation
		Property class		· · · · · · · · · · · · · · · · · · ·	I/mm²; A ₅ > 8% fracture elongation
	Anchor rod	acc. to EN ISO 898-1:2013		· ·	I/mm ² ; A ₅ > 8% fracture elongation
		EN 130 696-1.2013		· · · · · · · · · · · · · · · · · · ·	I/mm^2 ; $A_5 > 8\%$ fracture elongation
				-	I/mm²; A ₅ > 8% fracture elongation
		Property class	4	for anchor rod class 4.6	
	Hexagon nut	acc. to EN ISO 898-2:2012	5	for anchor rod class 5.6	
	Maskar	LIN 130 090-2.2012	8	for anchor rod class 8.8	
	Washer, (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	Steel, zinc plated, hot-	dip ga	alvanised or sherardized	
ta	ninless steel (Material 1.4401 / 1.44	04 / 1.4571 / 1.4362 or	1.457	8, acc. to EN 10088-1:2	014)
		Property class		· ·	I/mm ² ; A ₅ > 8% fracture elongation
	Anchor rod	acc. to	70	f _{uk} =700 N/mm ² ; f _{yk} =450 N	I/mm^2 ; $A_5 > 8\%$ fracture elongation
		EN ISO 3506-1:2009	80	f _{uk} =800 N/mm ² ; f _{yk} =600 N	I/mm^2 ; $A_5 > 8\%$ fracture elongation
		Property class	50	for anchor rod class 50	
	Hexagon nut	acc. to	70	for anchor rod class 70	
		EN ISO 3506-1:2009	80	for anchor rod class 80	
	Washer, (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	Material 1.4401, 1.440	4 / 1	.4571 / 1.4362 or 1.4578	EN 10088-1:2014
įç	h corrosion resistance steel (Mat	erial 1.4529 or 1.4565,	acc. t	o EN 10088-1: 2014)	
		Property class	50	f _{uk} =500 N/mm²; f _{yk} =210 N	l/mm²; A ₅ > 8% fracture elongation
	Anchor rod	acc. to	70	f _{uk} =700 N/mm²; f _{yk} =450 N	I/mm²; A ₅ > 8% fracture elongation
		EN ISO 3506-1:2009	80	f _{uk} =800 N/mm ² ; f _{yk} =600 N	I/mm²; A ₅ > 8% fracture elongation
		Property class	50	for anchor rod class 50	
	Hexagon nut	acc. to	70	for anchor rod class 70	
		EN ISO 3506-1:2009	80	for anchor rod class 80	
	Washer, (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	Material 1.4529 or 1.45	565, a	acc. to EN 10088-1: 2014	
	USAN Injection system for o	concrete			

Specifications of intended use

Anchorages subject to:

· Static and quasi-static loads

Base materials:

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Uncracked concrete

Temperature range:

- T1: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- T2: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)

Use conditions (Environmental conditions):

- (X1) Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- (X2) Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- (X3) Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- · Anchorages under static or quasi-static actions are designed in accordance with EN 1992-4

Concrete condition:

- I1 installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete
- · I2 installation in water-filled drill holes (not sea water) and use in service in dry or wet concrete

Installation:

- · Hole drilling by hammer or compressed air drill mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Installation direction:

• D3 - Downward and horizontal and upwards (e.g. overhead) installation.

LUSAN Injection system for concrete POLI, POLIE, POLIT	
Intended use Specifications	Annex B 1

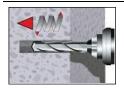
Anchor size		M 8	M 10	M 12	M 16	M 20	M 24
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28
Effective englycrose depth	h _{ef,min} [mm] =	60	60	70	80	90	96
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	320	400	480
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30
Maximum torque moment	T _{inst} [Nm] ≤	10 20 40 80		120	160		
This is a second first and		0					
Thickness of fixture	t _{fix,max} [mm] <	< 1500					
Minimum thickness of member	h _{min} [mm]	I	h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2d ₀				
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120

Steel brush C1

Table B2: Parameter cleaning and setting tools

Threaded Rod	d₀ Drill bit - Ø		l _b sh - Ø	d _{b,min} min. Brush - Ø
(mm)	(mm)	(m	ım)	(mm)
M8	10	C1-10	12	10,5
M10	12	C1-12	14	12,5
M12	14	C1-14	16	14,5
M16	18	C1-18	20	18,5
M20	24	C1-24	26	24,5
M24	28	C1-28	30	28,5

Hand pump (volume 750 ml)


Drill bit diameter (d_o): 10 mm to 20 mm and anchorage depth up to 240 mm

Recommended compressed air tool (min 6 bar) All applications

LUSAN Injection system for concrete POLI, POLIE, POLIT	
Intended use	Annex B 2
Installation parameters	
Cleaning and setting tools	

Installation instructions

1 Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1). In case of aborted drill hole: the drill hole shall be filled with mortar.

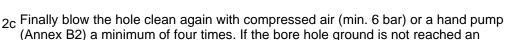
Attention! Standing water in the bore hole must be removed before cleaning.

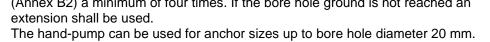
2a Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) or a hand pump (Annex B2) a minimum of four times. If the bore hole ground is not reached an extension shall be used.

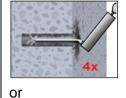
The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm.

For bore holes larger then 20 mm or deeper 240 mm, compressed air (min. 6 bar) **must** be used.

or a battery screwdriver. Brush the hole with an appropriate sized wire brush > d_{b,min}

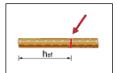


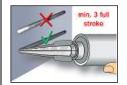

must be used.


(Table B2) a minimum of four times. If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B2).

2b Check brush diameter (Table B2) and attach the brush to a drilling machine

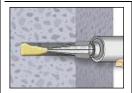
The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm. For bore holes larger than 20 mm or deeper 240 mm, compressed air (min. 6 bar) **must** be used.

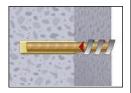

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning repeated has to be directly before dispensing the mortar.

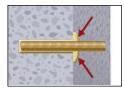

- 3. Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. Cut off the foil tube clip before use.

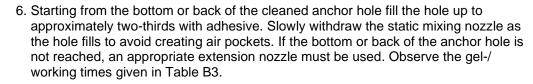
 For every working interruption longer than the recommended working time (Table B3) as well as for new cartridges, a new static-mixer shall be used.

In-flowing water must not contaminate the bore hole again


4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.

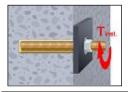



Prior to dispensing into the drill hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour. For foil tube cartridges it must be discarded a minimum of six full strokes.


LUSAN Injection system for concrete POLI, POLIE, POLIT	
Intended use Installation instructions	Annex B 3

Installation instructions (continuation)




7. Push the threaded rod into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.

The anchor should be free of dirt, grease, oil or other foreign material.

8. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges).

9. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B3).

10. After full curing, the add-on part can be installed with the max. torque (Table B1) by using a calibrated torque wrench.

Table B3: Minimum curing time

0	РО	LIT	PC	POLI		LIE
Concrete temperature	Max. working time	Min. curing time	Max. working time	Min. curing time	Max. working time	Min. curing time
0 to +4 °C			45 min	180 min	25 min	120 min
+5 to +9 °C			25 min	120 min	10 min	60 min
+10 to +14 °C	30 min	300 min	20 min	100 min	4 min	35 min
+15 to +19 °C	20 min	210 min	15 min	80 min	3 min	25 min
+20 to +29 °C	15 min	145 min	6 min	45 min	2 min	15 min
+30 to +34 °C	10 min	80 min	4 min	25 min		
+35 to +39 °C	6 min	45 min	2 min	20 min		
+40 to +44 °C	4 min	25 min				
+45 °C	2 min	20 min				
Cartridge temperature	+5°C to	+45°C	+5°C to	+40°C	0°C to	+30°C

LUSAN Injection system for concrete POLI, POLIE, POLIT	
Intended use Installation instructions (continuation) Curing time	Annex B 4

0:					14.40	14.40	N# 40	N4 00		
Size			F 21	M 8	M 10	M 12	M 16	M 20	M24	
Cross	s section area	As	[mm ²]	36,6	58	84,3	157	245	353	
Char	acteristic tension resistance, Steel failure 1)							1	1	
	, Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	
	, Property class 5.6 and 5.8	$N_{Rk,s}$	[kN]	18 (17)	29 (27)	42	78	122	176	
	, Property class 8.8	$N_{Rk,s}$	[kN]	29 (27)	46 (43)	67	125	196	282	
	less steel A4 and HCR, Property class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	
	less steel A4 and HCR, Property class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	
Stain	less steel A4 and HCR, Property class 80	$N_{Rk,s}$	[kN]	29	46	67	126	196	282	
Char	acteristic tension resistance, Partial safety factor	2)								
Steel	, Property class 4.6	γms,N	[-]	2,0						
Steel	, Property class 4.8	γ _{Ms,N}	[-]	1,5						
	, Property class 5.6	γ _{Ms,N}	[-]			2	,0			
	, Property class 5.8	γms,N	[-]				,5			
Steel	, Property class 8.8	[-]	1,5							
	less steel A4 and HCR, Property class 50	γ _{Ms,N}	[-]	2,86						
	less steel A4 and HCR, Property class 70	γMs,N	[-]	1,87						
Stain	less steel A4 and HCR, Property class 80	γ _{Ms,N}	[-]	1,6						
Char	acteristic shear resistance, Steel failure 1)									
	Steel, Property class 4.6 and 4.8	$V^0_{Rk,s}$	[kN]	9 (8)	14 (13)	20	38	59	85	
arm	Steel, Property class 5.6 and 5.8	$V^0_{Rk,s}$	[kN]	9 (8)	15 (13)	21	39	61	88	
ever	Steel, Property class 8.8	$V^0_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	
Without lever	Stainless steel A4 and HCR, Property class 50	$V^0_{Rk,s}$	[kN]	9	15	21	39	61	88	
With	Stainless steel A4 and HCR, Property class 70	$V^0_{Rk,s}$	[kN]	13	20	30	55	86	124	
	Stainless steel A4 and HCR, Property class 80	$V^0_{Rk,s}$	[kN]	15	23	34	63	98	141	
	Steel, Property class 4.6 and 4.8	$M^0_{Rk,s}$	[Nm]	15 (13)	30 (27)	52	133	260	449	
arm	Steel, Property class 5.6 and 5.8	$M^0_{Rk,s}$	[Nm]	19 (16)	37 (33)	65	166	324	560	
ever	Steel, Property class 8.8	M ⁰ _{Rk,s}	[Nm]	30 (26)	60 (53)	105	266	519	896	
With le	Stainless steel A4 and HCR, Property class 50	M ⁰ _{Rk,s}	[Nm]	19	37	66	167	325	561	
>	Stainless steel A4 and HCR, Property class 70	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	
	Stainless steel A4 and HCR, Property class 80	$M^0_{Rk,s}$	[Nm]	30	59	105	266	519	896	
Char	acteristic shear resistance, Partial safety factor 2)									
Steel	, Property class 4.6	γ _{Ms,V}	[-]	1,67						
Steel	, Property class 4.8	$\gamma_{\text{Ms,V}}$	[-]	1,25						
Steel	, Property class 5.6	γMs,V	[-]	1,67						
Steel	, Property class 5.8	$\gamma_{Ms,V}$	[-]	1,25						
	, Property class 8.8	γ _{Ms,V}	[-]	1,25						
	less steel A4 and HCR, Property class 50 50	γ _{Ms,V}	[-]	2,38						
	less steel A4 and HCR, Property class 50 70	γ _{Ms,V}	[-]	1,56						
	less steel A4 and HCR, Property class 80 alues are only valid for the given stress area A _s . Value	γ _{Ms,V}	[-]	doreizad t	hrooded ==	-	33	oce ores ^	for	
h	of dipped threaded rods galvanized according to EN Is absence of national regulation			dersized t	nreaded ro	ous with s	mailer su	ess area <i>P</i>	A _S IOI	
	JSAN Injection system for concrete DLI, POLIE, POLIT									
	erformances						Annex			

40°C/24°C flooded Temperature range II: 00°C/24°C dry and	wet concrete bore hole wet concrete		[kN] [-] [N/mm²] [N/mm²]	9,5		A _s • f _{uk} (or se see Ta	e Table C1) ble C1			
Partial safety factor Combined pull-out and concre Characteristic bond resistance in under the concretation of the concrete con	wet concrete bore hole wet concrete	γ _{Ms,N} re ete C20/25 τ _{Rk,ucr} τ _{Rk,ucr}	[-]	9,5		-				
Combined pull-out and concre Characteristic bond resistance in under the concrete Cha	wet concrete bore hole wet concrete	re ete C20/25 $\tau_{Rk,ucr}$ $\tau_{Rk,ucr}$	[N/mm²]	9,5	0.0	see Ta	ble C1			
Characteristic bond resistance in un Temperature range I: 40°C/24°C Temperature range II: 80°C/50°C dry and flooded flooded flooded	wet concrete bore hole wet concrete	ete C20/25 $ au_{Rk,ucr}$ $ au_{Rk,ucr}$		9,5	0.0					
Temperature range I: 40°C/24°C flooded Temperature range II: 80°C/50°C flooded Increasing factors for concrete	wet concrete bore hole wet concrete	τ _{Rk,ucr}		9,5	0.0					
40°C/24°C flooded Temperature range II: dry and flooded Increasing factors for concrete	bore hole wet concrete	τ _{Rk,ucr}		9,5	0.0					
40°C/24°C flooded Temperature range II: dry and flooded Increasing factors for concrete	wet concrete		[N/mm²]		9,0	8,5	8,5	8,0	8,0	
80°C/50°C flooded Increasing factors for concrete		TRKUCT		9,5	9,0	8,5	8,5	8,0	8,0	
Increasing factors for concrete	bore hole		[N/mm²]	8,0	8,0	7,5	7,5	7,0	7,0	
_		$ au_{Rk,ucr}$	[N/mm²]	8,0	8,0	7,5	7,5	7,0	7,0	
_			5/30			1,0				
_			0/37 5/45	1,12 1,19						
		C40/50		1,23						
			5/55 0/60				1,27 1,30			
Concrete cone failure		Col	U1 UU			1,0	,,,			
Factor		k _{ucr, N}	[-]	11,0						
Edge distance		C _{cr,N}	[mm]	1,5 h _{ef}						
Axial distance		S _{cr,N}	[mm]	2 c _{cr,N}						
Splitting failure										
h/h _{ef} ≥ 2	2,0					1,0	h _{ef}			
Edge distance 2,0 > h	h _{ef} > 1,3	C _{cr,sp}	[mm]	$2 \cdot h_{\scriptscriptstyle e\!f} igg(2, 5 - rac{h}{h_{\scriptscriptstyle e\!f}} igg)$						
h/h _{ef} ≤	,3					2,4	h _{ef}			
Axial distance		S _{cr,sp}	[mm]			2 c	er,sp			
Installation factor			 							
for dry and wet concrete		h _{ef} < 10d	γinst	1,0						
for dry and wet concrete		h _{ef} ≥ 10d	γinst	1,0 1,2				1,2		
for flooded bore hole			γinst	1,2						

			М 8	M 10	M 12	M 16	M 20	M24
Steel failure without lever arm								
Characteristic shear resistance Steel, strength class 4.6 and 4.8	$V^0_{Rk,s}$	[kN]		0,6	S • A _s • f _{uk} (or	r see Table C	1)	
Characteristic shear resistance Steel, strength class 5.6, 5.8 and 8.8 Stainless Steel A4 and HCR, all classes	$V^0_{Rk,s}$	[kN]		0,5	5 • A _s • f _{uk} (or	r see Table C	1)	
Partial factor	γ _{Ms,V}	[-]	see Table C1					
Ductility factor	k ₇	[-]			1	,0		
Steel failure with lever arm								
Characteristic bending moment	$M^0_{Rk,s}$	[Nm]		1,2	• W _{el} • f _{uk} (o	r see Table (C1)	
Partial factor	γ _{Ms,V}	[-]	see Table C1					
Concrete pry-out failure	·							
Factor	k ₈	[-]			2	,0		
Installation factor	γinst	[-]	1,0					
Concrete edge failure	1							
Effective length of fastener	I _f	[mm]	$I_f = min(h_{ef}; 12 d_{nom})$					
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24
Installation factor	γinst	[-]		1	1	,0	•	

Table C4: D	Displaceme	ent under tension	ı load ¹⁾					
Anchor size threade	d rod		М 8	M 10	M 12	M 16	M 20	M24
Uncracked concrete	C20/25							
Temperature range I:	δ _{N0} -factor	[mm/(N/mm²)]	0,02	0,02	0,03	0,04	0,05	0,06
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,04	0,04	0,04	0,05	0,05	0,06
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,02	0,03	0,03	0,04	0,06	0,07
80°C/50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,07	0,07	0,08	0,08	0,08	0,08

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{\text{N0}} &= \delta_{\text{N0}}\text{-factor} \ \cdot \tau; \\ \delta_{\text{N}\infty} &= \delta_{\text{N}\infty}\text{-factor} \ \cdot \tau; \end{split}$$

Table C5: Displacement under shear load¹⁾

Anchor size threaded rod				M 10	M 12	M 16	M 20	M24
For uncracked	concrete C2	0/25	I	I				
All temperature	δ _{V0} -factor	[mm/(kN)]	0,02	0,02	0,02	0,01	0,01	0,01
ranges	δ _{∨∞} -factor	[mm/(kN)]	0,03	0,03	0,03	0,02	0,02	0,02

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor }\cdot V;$

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor }\cdot V;$

LUSAN Injection system for concrete POLI, POLIE, POLIT	
Performances Displacement	Annex C 4